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Buffers

Pure JavaScript doesn’t have support for binary data.
NodeJS has a separate data type called Buffer which provides
support for binary data (an array of bytes).

This is useful for working with file system and TCP/IP networking.

Creating a buffer

A buffer of 5 bytes without initialization:

let data = new Buffer(5);





Creating a buffer from an array of values (values should be between 0 to 255):

let data = new Buffer([10 10 20 20 50]);





Buffers and Strings

Converting a sting into a buffer:

let data = new Buffer('hello text');





By default, strings are encoded in buffers using utf-8 encoding.

Converting a string into a buffer using a specific encoding:

let data = new Buffer('hello text', 'utf16le');
data = new Buffer('hello text', 'utf-8');
data = new Buffer('hello text', 'ascii');
data = new Buffer('hello text', 'base64');








          

      

      

    

  

    
      
          
            
  
File System

NodeJS comes with an extensive file system API in a module called fs.
However, the module is traditionally based on callbacks. In this book,
we will be focused on writing codes using promise based APIs which can
be easily used in async/await paradigm. Hence, we will use
a library named fs-extra [https://www.npmjs.com/package/fs-extra].

Checking existence of a file

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	const fs = require('fs-extra');

(async () => {
    let filename = './fs.rst';
    let exists = await fs.pathExists(filename);
    if (exists){
        console.log(`The file ${filename} exists.`);
    } else {
        console.log(`The file ${filename} does not exist.`);
    }
})();







Reading a file

	1
2
3
4
5
6
7
8
9

	const fs = require('fs-extra');

(async () => {
    // The readFile function reads the contents of a file in a buffer.
    let contents = await fs.readFile('read_file.js');
    // Buffer can be converted into string for further processing.
    let contents_str = contents.toString();
    console.log(contents_str);
})();
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Hello World

Make sure that you have installed the express framework:

npm install --save express





We require the express package:

const express = require('express');





We create an express application instance:

const app = express();





A web application essentially handles incoming requests at
different (URL) endpoints and returns data (in form of HTML/text/JSON etc.)
as response. To achieve this, we define different request handlers.
A request handler is a function with two arguments
(request and response).
The request object captures all information about incoming HTTP request.
The response object provides methods for sending response HTTP headers and
data.

Here is a simple request handler function:

const index = function (request, response) {
    response.send('Hello World!');
}





We now tell the express framework about the endpoint for which
this request handler will be used:

app.get('/', index);





We choose port number for the express web application:

const port = 3000;





We now setup the express application to listen at the specified port.
If the listening starts successfully, then a callback will get called
informing us about it:

app.listen(port, function() {
    console.log(`Example app listening on port ${port}!`);
});





Here is the complete code. Please save it in a file named helloworld.js.

const express = require('express');
const app = express();
const port = 3000;

const index = function (request, response) {
    response.send('Hello World!');
}

app.get('/', index);

app.listen(port, function() {
    console.log(`Example app listening on port ${port}!`);
});





We can start it by running:

node helloworld.js





Time to head to http://localhost:3000 and see the result.
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Functional Programming

Major libraries supporting functional programming in JavaScript


	Ramda [https://ramdajs.com/]


	Lodash [https://lodash.com/]




We will be primarily using Ramda for our examples below.

Importing the library:

R = require('ramda');






Empty

Checking whether something is empty (an object or an array or a string):

> R.isEmpty({})
true
> R.isEmpty([])
true
> R.isEmpty('')
true





This function will appropriately return false in other cases:

> R.isEmpty(0)
false
> R.isEmpty(1)
false
> R.isEmpty(true)
false
> R.isEmpty(false)
false
> R.isEmpty(null)
false
> R.isEmpty(undefined)
false
> R.isEmpty(NaN)
false
> R.isEmpty({1: 2})
false
> R.isEmpty([1])
false
> R.isEmpty('a')
false







Search

Searching for the index of an object in a array:

> R.findIndex(x => x == 2, [1, 2, 3])
1





The index is 0 based. The first argument is a predicate
which returns true when a suitable search criterion is
satisfied. Here, we are looking for the first element in the
array whose value is 2. Hence the criterion is x == 2.
The predicate function is written as an arrow function x => x ==2.

When no element of the array satisfies the given predicate, it returns -1:

> R.findIndex(x => x == 2, [1, 4, 3])
-1





The index of the first match is returned always:

> R.findIndex(x => x == 2, [1, 2, 2, 3])
1





Searching in an array of objects based on the value of an attribute:

> R.findIndex(x => x.v == 2, [{v : 4}, {v : 3}, {v: 2}])
2





Finding the array element:

> R.find(x => x == 2, [1, 2, 3])
2
> R.find(x => x == 2, [1, 4, 3])
undefined
> R.find(x => x == 2, [1, 2, 2, 3])
2
> R.find(x => x.v == 2, [{v : 4}, {v : 3}, {v: 2}])
{ v: 2 }





If there is no array element satisfying the criterion in the predicate,
then undefined is returned.
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